SCUOLA DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE

Master of Science in ELECTRONICS ENGINEERING

ATTENTION OF

May 27th, 2020

Data and Stats

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

Master Degree in Electronics Engineering

POLIMI

"La Scuola di Atene", by Raffaello Sanzio, Musei Vaticani, Rome

and original drawings by Raffaello, Pinacoteca Ambrosiana, Milano

Politecnico di Milano

1.300 academics e1.200 technicians and clerks

45.000 students

- **4** Schools/Faculties:
- Architecture, Urban Planning & Construction Engineering
- Design;
- Civil, Environmental & Land Management Engineering;
- Industrial and Information Engineering

12 Departments:

... DEIB ...

7 Campuses:

... "MI Leonardo" ...

POLIMI ranks as the top university in Italy for Engineering and Technology, and among the best all over the world

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

Ranking: #1 Italy, #6 Europe, #16 World

(in *«Engineering & Technology»* QS World University Ranking 2019)

POLIMI campuses

MI LeonardoMI BovisaCremonaCremonaLeccoMantovaDiacenza

franco.zappa@polimi.it

POLITECNICO MILANO 1863

POLIMI campuses in Milano

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

"MI Leonardo" Campus

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

"MI Leonardo" POLIMI campus

POLITECNICO MILANO 1863

ELETTRONICA (Building 24, v. Golgi 40)

Ciclofficina RuotaLibera

Departments (research tasks)

12 Departments (Head of Dept.)

Dept. ARCHITECTURE & URBAN STUDIES Dept. ARCHITECTURE, BUILDINGS & CONSTRUCTIONS Dept. CHEMISTRY, MATERIALS & CHEMICAL ENG "GIULIO NATTA" Dept. DESIGN Dept. ELECTRONICS, INFORMATION AND BIOENGINEERING Dep. ENERGY **Dept. PHYSICS** Dept. CIVIL AND ENVIRONMENTAL ENG. Dept. MANAGEMENT ENG. **Dept. MATHEMATICS Dept. MECHANICS** Dept. AEROSPACE SCIENCE AND TECHNOLOGY

(DASTU (DABC) (DCMC) (DESIGN) (DEIB) (DENG) (DFIS) (DICA) (DIG) (DMAT) (DMEC) (DAER)

Schools (Faculties for education)

4 Schools (Deans) e 74 CdS (Coordinators)

Ba

School of ARCHITECTURE URBAN PLANNING CONSTRUCTION ENG School of DESIGN School of CIVIL, ENVIRONMENTAL AND LAND MANAGEMENT ENG School of INDUSTRIAL AND INFORMATION ENGINEERING

OVERALL

28 Bachelor of Science (B.S.) 46 Master of Science (M.S., graduate) 18 Philosophy Doctor (Ph.D.)

chelor	Master
3	10+1
4	7
4	4
17	24
28	46

"3" School "Industrial and Information Engineering"

- Largest school of POLIMI
- > 5100 Bachelor degrees
- 8 Departments involved
- 917 academics and personnel

≈ 22% women

other campuses 8%

MI Leonardo 47%

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

with 60% of all students > 3500 Master degrees

≈ 21% international students

MI Bovisa 45%

Info on POLIMI and "3i" School Operation of Milano 1863 www.polimi.it www.ingindinf.polimi.it

SPOTLIGHT

.

TUDENTS

ISEE AND 2ND FEES INSTALMENT

Extension of the deadlines

STUDENTS

SUMMER SCHOOL IDEA LEAGUE

The 2020 Call is available

RESEARCH & INNOVATION

EUROPEAN PRIZE TO RESTORATION OF BASILICA OF SANTA MARIA DI COLLEMAGGIO

Politecnico di Milano took part in the European Heritage Awards / Europa Nostra 2020's winning project

TUDENTS

POLIPRINT AND POLITECNICO OFFICIAL MERCHANDISE REOPEN

Poliprint and Politecnico Official Merchandise, the printing service and official merchandise of the Politecnico

more

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

Final examination dates: lectures suspension

BSc programmes 1st year 2018/2019: change of campus (Computer Science, Electronics, Automation and c... Trouble ticketing system

Bandi Double Degrees interni - Outcome of the selection process - Firts screening

Bandi Double Degrees interni (doppie Lauree Magistrali) A.A. 2016-17

New Master of Science Degree in Geoinformatics Engineering

13/56

? FAQ

Study Programme

from other Italian Masters and worldwide Masters

Master H

from other Italian Bachelors and worldwide Bachelors

Bachelor

3rd Aest

Ph.D. 1st year

LM

LM

2nd year

2nd year 1st year

year

st year

2nd year

Ph.D.

Ph.D.

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

"Master degree" and job or R&D

14 / 56

"Bachelor degree" and job

Masters of Science in "3i"

"MI Leonardo" Campus **AUTOMATION and CONTROL eng. BIOMEDICAL eng.** CHEMICAL eng. **COMPUTER SCIENCE** and eng. ELECTRICAL eng. **ELECTRONICS** eng. **GEOINFORMATICS** eng. PHYSICS eng. MATERIALS eng. and NANOTECHNOLOGY MATHEMATICAL eng. **TELECOMMUNICATION** eng.

New Masters BIOINFORMATICS for COMPUTATIONAL GENOMICS CYBER RISK STRATEGY AND GOVERNANCE FOOD eng. MUSIC and ACOUSTING eng.

franco.zappa@polimi.it

POLITECNICO

MILANO 1863

"MI Bovisa" Campus **AERONAUTICAL** eng. **DESIGN & eng.** ELECTRICAL eng. ENERGY eng. MANAGEMENT eng. MANAG. of BUILT ENVIRON. **MECHANICAL** eng. MOBILITY eng. NUCLEAR eng. SPACE eng.

Info on Masters of Science

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

POLITECNICO **MILANO 1863**

OLITEC	NICO MILANO 186	63	
manirest	1	Show/S	22
Degree p	ammo Structuro	5110107 5	
> Show	/Search Programme	Academ Year	ic
Save	Document	School	
Degree F	Programme Degree Programme	Progran	nr
Facul	ty	Progran Year	nr
	titative data	Refre	sh
Inter	national context	Refres	
Customi	zed Schedule 🛛 👰	Gene	ra
Your cus	tomized time	1st Y	e
schedule	has been disabled	C de	
Enab	le	Code	
Search Searc	ch a Professor	052427	
Searc	ch a Course		
Searc prior	ch a Course (system D.M. n. 509)	054654	
Searc Englis	ch Lessons taught in sh	095155	
Glossa	ary	095162	
Se	emester (Sem)	095251	
1	First Semester		
2	Second Semester	095264	
A	Annual course	005074	
Cou	irse type (Type)	095274	
M	Mono-Disciplinary Course	054081	
V	Final Examination	054083	
	Language		
0	Course completely offered in italian		
	Course completely offered in english	2nd Y	ſe
()/₽	Course offered in italian and english	Code	
	Not available	095380	
Inn	ovative teaching		
	The credits shown next to this symbol indicate the part of	090918	
	the course CFUs		
	Innovative teaching. These CFUs include:	054085	
	 Subject taught jointly 	095394	
đ	with companies or organizations	090935	
	 Blended Learning & 		
	Flipped		
	Massive	090921	
	Open Online Courses	090921	
	(MOOC)		
	SOTT SKIIIS	Course	
		Cours	50
		Code	

Search F	Programme		
emic	2019/202 V Sede	All campuses	~
bl	School of Industrial and Info	ormation Engineering (225)	~
amme	Electronics Engineering (47	76)	~
amme	All 🗸 Track	PSS - ELECTRONICS ENGINEERING Campus: Milano Leonardo Language: English	

eneral informations (Show >>)

C ... -

Y	'ear								
	SSD	Course Title	Num Sec	Language	Course location	Туре	Sem	CFU	CFU Group
7	ING- INF/01	ANALOG CIRCUIT DESIGN			MI	М	1	10.0 [1.0 ⓓi]	10.0
1	ING- INF/01	ELECTRONIC SYSTEMS		-	MI	М	1	10.0	10.0
5	ING- INF/01	ELECTRON DEVICES			MI	М	1	10.0	10.0
2	ING- INF/01	MEMS AND MICROSENSORS			MI	М	1	10.0	10.0
L	ING- INF/01	SIGNAL RECOVERY			MI	М	2	10.0	10.0
1	ING- INF/01	DIGITAL INTEGRATED CIRCUIT DES	<u>IGN</u>		MI	М	2	10.0	10.0
1	ING- INF/01	RF CIRCUIT DESIGN			MI	Μ	2	10.0	10.0
L	ING- INF/01	MICROELECTRONIC TECHNOLOGIES	5		MI	М	2	5.0 [1.0 di]	FO
3	ING- INF/01	DIGITAL ELECTRONIC SYSTEMS DES	<u>SIGN</u>		MI	М	2	5.0 [3.0 di]	5.0
		Courses to be chosen from Group TA	<u>AB1</u>						5.0

nd `	Year								
de	SSD	Course Title	Num Sec	Language	Course location	Туре	Sem	CFU	CFU Group
380	ING- INF/01	MIXED-SIGNAL CIRCUIT DESIGN		+	MI	М	1	10.0	10.0
918	ING- INF/01	POWER ELECTRONICS			MI	М	1	10.0	10.0
		Courses to be chosen from Group TA	<u>B1</u>						10.0
)85	ING- INF/01	BIOCHIP			MI	М	2	5.0 [2.0 di]	
394	ING- INF/01	SEMICONDUCTOR RADIATION DETECTORS			MI	М	2	5.0	10.0
935	ING- INF/01	ELECTRONICS DESIGN FOR BIOMED	ICAL		MI	М	2	10.0	
		Courses to be chosen from Group TA	<u>B2</u>						10.0
		Courses to be chosen from Group TA	<u>B1</u>						10.0
921		THESIS AND FINAL EXAM				V	1	20.0	20.0
921		THESIS AND FINAL EXAM				V	2	20.0	20.0

Cour	ses of the G	roup IAB1							
Code	SSD	с	ourse Title	Num Sec	Language	Course location	Туре	Sem	CFU
052471	ING- INF/03	ADVANCED DI	GITAL SIGNAL PROCESSI	NG		MI	М	1	10.0 [1.0 di]
097589	FIS/03	ADVANCED OF	PTICS AND LASERS			MI	М	1	10.0
099282	BIO/10	BIOINFORMAT	ICS AND FUNCTIONAL G	ENOMICS	0	MI	М	1	5.0
083042	ING- IND/34	CELLULAR BIC	ENGINEERING		0	MI	М	1	10.0

M.S. Descriptions and Regulations www.polimi.it/corsi/corsi-di-laurea-magistrale

School of Industrial and Information Engineering Electronics Engineering (Milano Leonardo) - 2019/2020

2. General presentation of the study programme

The Study Programme in Electronics Engineering prepares the student to conceive, design, innovate, validate and disseminate devices, circuits, apparatuses and complex electronic systems and to integrate them into highly multidisciplinary areas, in the most diversified applications and countless high-tech and consumer world markets.

The Study Programme in Electronics Engineering (ELN) is divided into a first-level three-year Bachelor of Science (Laurea, L) degree and a second-level two-year Master of Science (Laurea Magistrale, LM) degree, with progressively increasing contents and skills. The Laurea Magistrale in Electronics Engineering (LM ELN) is equivalent to the Master of Science in Electronics Engineering (M.S.E.E.).

The aim of the LM ELN is to train and complete professional Electronics Engineers with a broad and robust scientific, technological and engineering know-how, so that they acquire the capability of combining the physical-chemical-mathematical aspects of the most advanced sciences with the technological needs of advanced engineering implementations. The LM ELN provides the skills to create enabling technologies, demonstrate innovative applications, design cutting-edge electronic products and systems, integrate them in the most diverse areas, often expanding toward new markets and scenarios, by inventing new fields, and by improving the quality of everyday life.

Electronics is everywhere around us and it is the irreplaceable and enabling basis of all current and future technologies of the Information, Communication, Control, Automation, Energy and Electricity era. Scientific researches and market developments in electronic technologies are continuous, incessant, and increasingly stimulated by the most diverse and demanding applications. For example, ever-faster microprocessors, with low power consumption, but higher and higher computing power, and increasingly dense memories, without defects and of long endurance and short access time, are the essential electronic constituents of any computer and processing system; without such electronic circuits, artificial intelligence would remain only science-fiction. The ultrasensitive and miniaturized semiconductor sensors, which continually dialogue with each other and towards the outside world, in the most refined robotic systems and in distributed and ubiquitous networks, are fundamental to acquire the real world's signals, understand them, manage them, control them, and implement actions; without such electronic devices, reality would remain only virtual. Electronic devices, from the simplest consumer products of entertainment and gaming to advanced electronic systems for automation and control, communications, information systems, biomedical instrumentation, equipment for energy generation, storage and distribution, avionics, mechatronics and satellite systems, and so on, have become so fundamental that their existence and performance are taken for granted; without such electronic systems there would be no modern world.

Thanks to the success of the LM ELN and the excellence of Electronics Engineers, the design and innovation of electronic devices, electronic circuits, electronic equipment and systems will provide the fundamental building blocks for all areas of modern life, with all its "Smart-" (smart cyberphysical-systems, smart industries, smart manufacturing, smart living, smart mobility, smart lighting, smart cities, smart communities, smart aging, etc.) and "autonomous-" (vehicles, driving, fleet, manufacturing, etc.) features, so invasive in everyday life.

The Master of Science's Electronics Engineer is the inventor of these systems, she/he designs them, develops them, validates them experimentally and eventually installs them into the end-user application. The first task of an Electronics Engineer is to derive models of the physical reality with which his/her electronic systems will interact, to understand, describe, foresee, and verify the interactions with the other mechanical, electrical, energetic, informative, biological, clinical, physical, chemical, nuclear, etc. equipment. It is a refined and multifaceted professional figure, not closed in his world, but oriented to a continuous interaction with the users of these systems. The Electronics Engineer has a propulsive push towards innovation aimed at improving the performance not only of what is electronic-based (e.g., the component, board, instrument, mainframe,

Data: 23/Mar/2019

School of Industrial and Information Engineering Electronics Engineering (Milano Leonardo) - 2019/2020

- · PROJECTs to train students to put skills into practice;

 CONTESTs between students and with companies. As shown in the guidelines for the second-level Laurea Magistrale in Electronics Engineering, seven courses offer a total of 12 credits of D.I. Action 1; these are indicated in the following tables with the symbol "d.i." and the number of corresponding credits out of the total number of credits assigned to the course (e.g. the "2.0 d.i." of the "Biochip" subject at the second year, out of the 5 credits total).

Furthermore, in the next academic years other forms of D.I., both in the form of Action 1 and Action 2 activities, will be activated, to allow students to acquire other "soft skills", in addition to technological and scientific knowledge, aimed at improving both public speaking and interactive presentation of achieved results (e.g. the progress of on-going studies or projects), organizational skills, team building and effective teamwork interactions.

Code	Act type	SSD	Course Title	Langu age	ту
052427	В	ING-INF/01	ANALOG CIRCUIT DESIGN	EN	м
054654	В	ING-INF/01	ELECTRONIC SYSTEMS	EN	Μ
095155	В	ING-INF/01	ELECTRON DEVICES	EN	Μ
095162	В	ING-INF/01	MEMS AND MICROSENSORS	EN	Μ
095251	В	ING-INF/01	SIGNAL RECOVERY	EN	Μ
095264	В	ING-INF/01	DIGITAL INTEGRATED CIRCUIT DESIGN	EN	Μ
095274	В	ING-INF/01	RF CIRCUIT DESIGN	EN	Μ
054081	В	ING-INF/01	MICROELECTRONIC TECHNOLOGIES	EN	М
054083	В	ING-INF/01	DIGITAL ELECTRONIC SYSTEMS DESIGN	EN	М
			Courses to be chosen from Group TAB1		

Legend for the "Training Activities" column: "B" are core-course on characterizing Electronics subjects; "C" are side-courses, i.e. not strictly related to Electronics topics. The be more specific, core-courses are those belonging to the specific Scientific Disciplinary Sectors (SSD) "ING-INF / 01 - ELECTRONICS" and also "ING-INF / 02 - Electromagnetic Fields" and "ING-INF / 07 -Electrical Measurements and Electronics".

The 10 credits "ANALOG CIRCUIT DESIGN" core-course provides also 1 credit of Innovative Education (D.I. indicated with "1.0 d.i." in the tables) consisting of lessons delivered with active teaching methods in which the students are asked to answer interactively to questions posed in classroom and at the end of the lessons and by contents addressed in flipped-class mode.

The 5 credits "DIGITAL ELECTRONIC SYSTEM DESIGN" core-course provides 3 credits of D.I. consisting of flipped-class activities with hands-on practice on developmental electronic boards employing configurable electronic FPGA (field-programmable gate-array) devices and on CAD software tools for the synthesis and simulation of programmable digital electronic systems.

The 5 credit "MICROELECTRONIC TECHNOLOGIES" core-course provides 1 credit of D.I. consisting of a multimedia MOOC (Massive Open Online Course) on some microelectronic manufacturing processing for integrated circuits and of guided tours in laboratories and production rooms of a microelectronic industry.

2 Year courses - Track: PSS - ELECTRONICS ENGINEERING

Code	Act type	SSD	Course Title	Langu age	Туре
095380	в	ING-INF/01	MIXED-SIGNAL CIRCUIT DESIGN	EN	М

Data: 23/Mar/2019

pag. 2/20

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

POLITECNICO

MILANO 1863

School of Industrial and Information Engineering Electronics Engineering (Milano Leonardo) - 2019/2020

090918	В	ING-INF/01	POWER ELECTRONICS	EN	М	1	10.0	
			Courses to be chosen from Group TAB1					10.0
054085	В	ING-INF/01	BIOCHIP	EN	М	2	5.0 [2.0 @]	
095394	В	ING-INF/01	SEMICONDUCTOR RADIATION DETECTORS	EN	М	2	5.0	10.0
090935	В	ING-INF/01	ELECTRONICS DESIGN FOR BIOMEDICAL INSTRUMENTATION	EN	М	2	10.0	
			Courses to be chosen from Group TAB2					10.0
			Courses to be chosen from Group TAB1					10.0
090921			THESIS AND FINAL EXAM		V	1	20.0	20.0
090921			THESIS AND FINAL EXAM		V	2	20.0	20.0

The 5 credit "BIOCHIP" course provides 2 credits of D.I., consisting of a multimedia MOOC (Massive Open Online Course) on microelectronic methodologies for manufacturing electronic devices and biochips, and of some activities where students must design a biochip at the POLI-FAB clean-rooms and laboratories.

Courses of the Group TAB1

Code	Act type	SSD	Course Title	Langu age	Туре	Sem	CFU
052471	с	ING-INF/03	ADVANCED DIGITAL SIGNAL PROCESSING	EN	М	1	10.0 [1.0 @]
094790	С	ING-INF/03	RADAR IMAGING	EN	М	1	5.0
096129	С	ING-INF/04	ADVANCED AND MULTIVARIABLE CONTROL	EN	М	2	10.0
083047	с	ING- IND/34	BIOMATERIALS [C.I.]	IT	I	2	10.0
083042	с	ING- IND/34	CELLULAR BIOENGINEERING	IT	М	1	10.0
097589	С	FIS/03	ADVANCED OPTICS AND LASERS	EN	М	1	10.0
095942	С	ING-INF/05	DIGITAL SYSTEMS DESIGN METHODOLOGIES	EN	Ι	2	10.0
073011	С	ING-INF/06	BIOENGINEERING OF THE MOTOR SYSTEM	IT	М	1	5.0
099282	С	BIO/10	BIOINFORMATICS AND FUNCTIONAL GENOMICS	IT	М	1	5.0
096617	С	FIS/03	PHYSICS OF PHOTOVOLTAIC PROCESSES	EN	М	1	5.0
052351	С	ING-INF/04	MODEL IDENTIFICATION AND DATA ANALYSIS	EN	Ι	1	10.0
096081	С	FIS/03	QUANTUM OPTICS AND INFORMATION	EN	М	2	5.0
093062	С	ING-INF/04	AUTOMATION AND CONTROL IN VEHICLES	EN	М	2	5.0
054312	с	ING-INF/03	DIGITAL COMMUNICATION	EN	I	1	10.0 [2.0 @]
088949	С	ING-INF/05	ADVANCED COMPUTER ARCHITECTURES	EN	М	2	5.0
090914	С	ING-INF/04	CONTROL OF INDUSTRIAL ROBOTS	EN	Μ	1	5.0
095907	С	ING-INF/05	EMBEDDED SYSTEMS	EN	Ι	1	10.0
096660	С	MAT/08	NUMERICAL METHODS IN MICROELECTRONICS	EN	М	2	5.0
052470	С	ING-INF/03	QUANTUM COMMUNICATIONS	EN	Μ	2	5.0
089480	С	FIS/03	SOLID STATE PHYSICS A	EN	Μ	2	5.0
096532	С	ING- IND/31	ADVANCED CIRCUIT THEORY	EN	М	2	5.0

In TAB1 there are 5 and 10 credit electives taught in Italian that students can select.

Courses of the Group TAB2

Code	Act type	SSD	Course Title	Langu age	Туре	Sem	CFU
090918	В	ING-INF/01	POWER ELECTRONICS	EN	Μ	1	10.0

Data: 23/Mar/2019

pag. 16/20

Sem	CFU	CFU Group
1	10.0 [1.0 •]	10.0
1	10.0	10.0
1	10.0	10.0
1	10.0	10.0
2	10.0	10.0
2	10.0	10.0
2	10.0	10.0
2	5.0 [1.0 @]	50
2	5.0 [3.0 @]	5.0
		5.0

POLIMI services

Libraries: 4 a MI + 1 materials library + 5 in other Campus

Career Service www.careerservice.polimi.it to prepare to future jobs

CareerService

www.careerservice.polimi.it

POLIHUB www.polihub.it

to support your ideas and to foster startups

BY FONDAZIONE POLITECNICO DI MILANO

MOOCS

www.pok.polimi.it

to download free online courses by POLIMI

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

Politecnico di Milano: Schools and Masters

Electronics and Engineering: what and why?

Data and Stats

franco.zappa@polimi.it

Master Degree in Electronics Engineering

What is ELECTRONICS?

embedded systems, smart machines, communication, networks... smart, autonomous, wearable, "...of things" ... systems for *real* and *virtual* worlds, and for *augmented-reality* for humans and robots !

Electronics it the enabling technology to capture real-world information, to process signals, to make actions and motion, to interact with machines, to augment the reality around us !

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

Where is ELECTRONICS?

components and circuits

science, physics, space

consumer electronics

clinical and scientific instrumentation

Electronics is wherever hardware, products, system, innovation, intelligence... are !

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

Internet Of Things & wearable

PET insert

LV batteries

21 / 56

HV regulator

Optical fibers

Where is ELECTRONICS?

avionics and transportation

robot and drones

Electronics is wherever hardware, products, system, innovation, intelligence... are !

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

Industrial automation

ELECTRONICS is "inside" ...

Electronics is inside whatever is intelligent, autonomous, mobile, even inside humans !

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

POLITECNICO

MILANO 1863

... from the smallest...

Electronic Engineers start from electrons and holes, to conceive nanometric devices, integrate them in a micrometric and millimetric circuit, so to define the macro system.

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

18'000 to 180'000 nm

Human hair

MICROCHIP

POLITECNICO

MILANO 1863

about 2 mm (2'000'000 nm)

... to the big...

... and toward the enormous !

Before

After

Adaptive optics in Astrophysics

LEAD EXPLORATION ANALOGUE DEPLOYMENT

LIDAR Takes digital 3D images of the rover's immediate environment

DRIVE CAMERAS (3)

Provide situational awareness to the remote operators to avoid obstacles and precisely position the rover

ROBOTIC ARM Collects rock or soil samples and manipulates the sample canister

AVIONICS MODULE Suite of on-board electronics

SAMPLE CANISTER MOCK-UP

Emulates the container that would store the samples to be returned to Earth

Canadian Space Agence spatial

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

JUNO, A RUGGED, ALL-TERRAIN ROVER TEST COMPONENTS

GPS GROUND-TRUTH SYSTEM

Logs actual localization data for post-mission analysis

EMBEDDED VISUAL ODOMETRY (EVO) SYSTEM

MILANO 1863

Stereo camera and computing unit providing real-time localization of the rover

SCIENCE CAMERA

Provides panoramas and highresolution imagery with its pan, tilt and zoom features

RADIO SYSTEM

Provides communications with the remote control station

Who is the Electronic Engineer?

grasps the needs and conceives the solutions: creates, simulates, designs, makes, validates, installs... devices, components, circuits, apparatus, systems...

Electronic Engineers operate in all "smart" and autonomous sectors of modern life !

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

Electronics makes your dreams come true

John is quality manager in the GT **Division of Ferrari, in Maranello**

> Stephan is *principal engineer* on quantum computers at Intel Labs

Robert works on an international *scientific* experiment at CERN

Graduates in Electronics Engineering go everywhere and realize dreams – his/her own and those of other

Mageople CTRONICS Engineering

franco.zappa@polimi.it

POLITECNICO

MILANO 1863

Cupertino, CA

Helena is program manager in Apple

Irene is 3D sensor systems engineer at Zoox

Where the Electronic Engineer works...

Electronic Engineers operate all along the production and supply chain of moder life systems.

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

Acquired Expertise

• spot • define • select design develop • exploit • integrate • validate manage

what to solve and how specs, requirements, constraints, costs, pros/cons design methodologies and technologies electron devices integrated circuits, electronic boards, mixed systems sensors, actuators, µP, FPGA, DSP, ... at best electronics into applications (atm, bio, ene, mec, inf, tlc ...) through instrumentation "ilities" in plants and systems (reliability, manufacturability, testability ...)

Electronic Engineers operate in all sectors from ideas to realization, production and management !

Master in ELECTRONICS Engineering

• profit

franco.zappa@polimi.it

Job Outlooks

 microelectronics high-tech industries companies industrial automation infrastructures • R&D genetics / pharmacology / medicine start-up & spin-off companies consultancy and entrepreneurship public/private scientific/technological organizations Ph.D.

Electronic Engineers operate in all high-tech and R&D companies !

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

for semiconductors / integrated circuits

(mechatronics, avionics, energy, automotive, space...)

for smart electronics (infotainment, telecomm, computers...) and robotics for manufacturing for communications / networks / cloud / grid

Politecnico di Milano: Schools and Masters

Gerein Electronics and Engineering: what and why?

Master Degree in Electronics Engineering

Data and Stats

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

Study Programme

from other Italian Masters and worldwide Masters

Master H

from other Italian Bachelors and worldwide Bachelors

Bachelor

3rd Aest

Ph.D. 1st year

LM

LM

2nd year

2nd year 1st year

year

st year

2nd year

Ph.D.

Ph.D.

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

"Master degree" and job or R&D

33 / 56

"Bachelor degree" and job

Electronics is not Electrical Eng.

production, transmission, distribution of electric energy

electric traction

Electrical is high voltage/current/power/machines

franco.zappa@polimi.it

POLITECNICO MILANO 1863

heavy industry

e-vehicles

electrical machines

Electronics minimizes dissipation/power/bulkiness

Goals of the M.S.E.E.

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

Useful Contacts

name.surname@mail.polimi.it Student email: name.surname@polimi.it **Teacher email:** (02-2399) xxxx Phone number:

Enrollment to the Master: (international students) prof. christian.monzio@polimi.it

(Italian students)

Study Plans:

prof. chiara.guazzoni@polimi.it

Coordinator:

prof. franco.zappa@polimi.it

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

prof. massimo.ghioni@polimi.it and prof. salvatore.levantino@polimi.it

M.S.E.E.: 1st Year

		America Contraction
77/	caratterizzante	ANALOG CI
	caratterizzante	ELECTRON
	caratterizzante	ELECTRON
	caratterizzante	MEMS AND
	caratterizzante	SIGNAL REG
	caratterizzante	DIGITAL IN
5	caratterizzante	RF CIRCUIT
•	caratterizzante	DIGITAL EL
	caratterizzante	MICROELE
	affine	

tipologia

100 CFU in 2 years: 60 CFU at the 1st year, corresponding to 7 classes taught in English. One course of 10 CFU corresponds to 60h of lessons and 40h of exercises.

2

Master in ELECTRONICS Engineering

from Bachelor

IM Vear 2 Near 1

franco.zappa@polimi.it

Nome Insegnamento	Sem	CFU	di cui di D.I.	CFU Gruppo
IRCUIT DESIGN	1	10	1	10
IC SYSTEMS	1	10		10
DEVICES	1	10		10
MICROSENSORS	1	10		
COVERY	2	10		10
TEGRATED CIRCUIT DESIGN	2	10		10
DESIGN	2	10		10
ECTRONIC SYSTEMS DESIGN	2	5	3	5
CTRONIC TECHNOLOGIES	2	5	1	ر ا
Insegnamenti a scelta dal Gruppo TAB1				5

M.S.E.E.: 2nd Year

At the 2nd year only 40 CFU (**25 CFU are eligible courses**). All in **English**. Finally 20 CFU (6-9 months) of **experimental thesis in the labs** of POLIMI or in a company.

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

ome Insegnamento	Sem	CFU	di cui di D.I.	CFU Gruppo	
CIRCUIT DESIGN	1	10		10	
RONICS	1	10			
egnamenti a scelta dal Gruppo TAB1				10	
	2	5	2	2	
TOR RADIATION DETECTORS	2	5	2	10	
DESIGN FOR BIOMEDICAL INSTRUM.	2	10			
nti a scelta dal Gruppo (AB1 o TAB2				10	
THESIS AND FINAL EXAM	\cap	20		20	

... several electives and choices

_	SSD	Denominazione Insegnamento	Sem	di cui di D.I.	
	FIS/03	PHYSICS OF PHOTOVOLTAIC PROCESSES	1 5		
_	FIS/03	ADVANCED OPTICS AND LASERS	1 10)	
	FIS/03	QUANTUM OPTICS AND INFORMATION	2 5		
-	FIS/03	SOLID STATE PHYSICS A	2 5		
AB	ING-IND/31	ADVANCED CIRCUIT THEORY	2 5		
F/	ING-INF/03	DIGITAL COMMUNICATION	1 10) 1	
od	ING-INF/03	ADVANCED DIGITAL SIGNAL PROCESSING	1 10) 1	1
Idr	ING-INF/03	RADAR IMAGING	1 5		
L.	ING-INF/03	QUANTUM COMMUNICATIONS	2 5		
	ING-INF/04	CONTROL OF INDUSTRIAL ROBOTS	1 5		-
de	ING-INF/04	MODEL IDENTIFICATION AND DATA ANALYSIS	1 10)	
t	ING-INF/04	AUTOMATION AND CONTROL IN VEHICLES	2 5	,	
en	ING-INF/04	ADVANCED AND MULTIVARIABLE CONTROL	2 10)	
Ξ	ING-INF/05	EMBEDDED SYSTEMS	1 10)	
na	ING-INF/05	DIGITAL SYSTEMS DESIGN METHODOLOGIES	2 10)	
60	ING-INF/05	ADVANCED COMPUTER ARCHITECTURES	2 5	,	
JSC	ING-IND/34	BIOMATERIALI [C.I.]	2 10)	1
=	ING-IND/34	BIOINGEGNERIA CELLULARE	1 10)	
	ING-INF/06	BIOINGEGNERIA DEL SISTEMA MOTORIO	1 5	,	
	BIO/10	BIOINFORMATICA E GENOMICA FUNZIONALE	1 5		
	MAT/08	NUMERICAL METHODS IN MICROELECTRONICS	2 5		

Master in ELECTRONICS Engineering

SSD	Denominazione Insegnamento	Sem	CFU	di cui di D.I.
caratterizzante	BIOCHIP	2	5	2
caratterizzante	DIGITAL ELECTRONIC SYSTEMS DESIGN	2	5	
caratterizzante	DIGITAL INTEGRATED CIRCUIT DESIGN	2	10	
caratterizzante	ELECTRON DEVICES	1	10	
caratterizzante	ELECTRONICS AND ELECTROACOUSTIC FOR SOUND ENG.	2	10	
caratterizzante	ELECTRONICS DESIGN FOR BIOMEDICAL INSTRUM.	2	10	\sum
caratterizzante	MEMS AND MICROSENSORS	1	10	1
caratterizzante	MICROELECTRONIC TECHNOLOGIES	2	5	1
caratterizzante	MIXED-SIGNAL CIRCUIT DESIGN	1	10	
caratterizzante	POWER ELECTRONICS	1	10	
caratterizzante	RF CIRCUIT DESIGN	2	10	11
caratterizzante	SEMICONDUCTOR RADIATION DETECTORS	2	5	
caratterizzante	SENSOR SYSTEMS	1	5	3
caratterizzante	ANTENNAS	2	5	5
caratterizzante	ELECTROMAGNETIC COMPATIBILITY	1	5	3
caratterizzante	MICROWAVE ENGINEERING	2	5	22
caratterizzante	PHOTONIC DEVICES	2	10	X,
caratterizzante	RF SYSTEMS	1	10	
caratterizzante	OPTICAL MEASUREMENTS	1	5	

Hands-on Labs and THESIS

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

Timeline

5 exam trials for each teaching every year.

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

MILANO 1863

2nd Year

IV sem Apr Mag Nov Dic Mar Set Ott Nov Gen Feb Lug Dic Giu 2022 2023 graduation

Example of Academic Year

SESSIONE D'ESAME 1° SEMESTRE		The second	D'ESAME			2° SEMEST	8	SESSIONE D'ESAME					
agosto	settembre	ottobre	novembre	dicembre			febbraio	marzo	aprile	maggio	giugno		luglio
1 gio	1 dom	1 mar	1 ven	1 dom			1 sab	1 dom	1 mer	1 ven	1 lun		1 mer
2 ven	2 lun	2 mer	2 sab	2 lun	• 4		2 dom	2 lun	2 gio	2 sab	2 mar		2 gio
3 sab	3 mar	3 gio ≭	3 dom	3 mar	•		3 lun	3 mar	3 ven	3 dom	3 mer		3 ven
4 dom	4 mer	4 ven \star	4 lun	4 mer	•		4 mar	4 mer *	4 sab	4 lun	4 gio		4 sab
5 lun	5 gio	5 sab	5 mar	5 gio			5 mer	5 gio *	5 dom	5 mar	5 ven		5 dom
6 mar	6 ven	6 dom	6 mer	6 ven	6 lun		6 gio	6 ven	6 lun	6 mer	6 sab	3	6 lun
7 mer	7 sab	7 lun	7 gio	7 sab	7 mar		7 ven	7 sab	7 mar	7 gio	7 dom	_	7 mar
gio	8 dom	8 mar	8 ven	8 dom	8 mer		8 sab	8 dom	8 mer	8 ven	8 lun		8 mer
ven	9 Jun	9 mer	9 sab	9 lun	9 gio	ING	9 dom	9 lun	9 gio	9 sab	9 mar		9 gio
He sab	10 mar 😕	10 gio	10 dom	10 @	10 ven	ING	10 lun	10 mar	10 ven	10 dom	10 mer		10 ven
11 dom	11 m 8	11 ven	11 lun		11 sab		11 mar 🛪	11 mer	11 sab	11 lux	11 gio	ING	11 sab
r2 lun	120 *	12 sab	12 mar	1. 30	12 dom		12 mer \star	12 gio	12 dom	Contract Contract	12 ven	ING	12 dom
13 mar		13 dom	13 mer	13 ven	13 lun		13 gio \star	13 ven	13 lun	100	13 sab		13 lun
14 mer	sab	14 lun	14-10	14 sab	14 mar		14 ven	14 sab	14 mar	4 gio	14 dom		14 mar
15 gio	15 dom	15 mar	VA	15 dom	15 mer		15 sab	15 dom	15 mer	15 ven	15 lun		15 mer
16 ven	16 lun	16 merr	16 ab	16 lun	16 gio		16 dom	16 lun	16 50	16 sab	16 mar		16 gio
17 sab	17 mar	17 gio	17 dom	17 mar 🔺	17 ven	51		17 mar		17 dom	17 mer		17 ven
18 dom	18 mer	18 vi	18 lun	18 mer *	18 sab		18 var	18 mer	lo sab	18 lun	18 gio		18 sab
19 lun	19 gio	19 sab	19 mar	19 gio	19 dom		mer	19 gic	19 dom	19 mar	19 ven		19 dom
20 mar	20 ven	20 dom	20 mer	20 ven	20 lun		z0 gio	200	20 Jun	20 mer	20 sab		20 lun
21 mer	21 sab	21 lun	21 gio	21 sab	21 m		21 ven	1 sab	21 mar	21 gio	21 dom		21 1
22 gio	22 dom	22 mar	22 ven	22 dom	22 me		22 sab	2 Iom	22 mer	22 ven	22 lun		
23 ven	23 lun	23 mer	23 sab	23 lun	23 gio		23 dom	z3 lun	23 gio	23 sab	23 mar		gio * *
24 sab	24 mar	24 gio	24 dom	24 mar	24 ven		24 lun	24 mar	24 ven	24 dom	24 mer		24 ven *
25 dom	25 mer	25 ven	25 lun	25 mer	25 sab		25 mar	25 mer	25 sab	25 lun	25 gio	5	25 sab
26 lun	26 gio *	26 sab	26 mar	26 gio	26 dom	110	26 mer	26 gio	26 dom	26 mar	26 ven		26 dom
27 mar	27 ven *	27 dom	27 mer	27 ven	27 lun	11	27 gio	27 ven	27 lun	27 mer	27 sab	2	27 lun
28 mer	28 550	4 teac	hinds	28 sab	28 mar		28 ven 2	28 54 + C	achin	gio	28 dom		28 mar
29 gio	29 dom	29 mar	29 ven	29 dom	29 mer		29 sab	29 dom	25 mer 🔭	23 ven	29 lun		29 mer
30 ven	30 lun	30 mer	30 sab	30 lun	30 gio			30 lun	30 gio	30 sab	30 mar		30 gio
31 sab		31 gio		31 mar	31 ven			31 mar		31 dom			31 ven

LEGENDA

esami di profitto lezioni festività vacanze periodo senza esami, revisioni e recuperi facoltativi per laboratori (design) prove in itinere (lezioni sospese)

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

POLITECNICO **MILANO 1863**

Example of Weekly Schedule

Data	Dove	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00
	<u>D.1.2</u>					(dal 1	nej ANALOG CIRCUI 7/09/2018 al 17/12/20	1 DESIGN 018)					
Lunedì	<u>E.G.6</u>	[lezione] CONTROL OF INDU ROBOTS (dal 17/09/2018 al 17/12/2018	STRIAL										
	<u>D.0.4</u>		[lezione (dal 09/	ELECTRONIC SY 10/2018 al 18/12/20	STEMS 18)								
Martedì	<u>S.1.3</u>						[lezion MICRO (dal 18	e] MEMS AND DSENSORS 2/09/2018 al 18/12/20	118)				
	<u>E.G.8</u>						[eserci MICRO (dal 09	tazione] MEMS AND DSENSORS 1/10/2018 al 11/12/20	18)				
	<u>D.0.4</u>	[lezione] MEMS AND MICROSENSORS (dal 09/10/2018 al 18/12/2018)										
	<u>D.1.2</u>		[lezione (dal 19/	ANALOG CIRCUIT 09/2018 al 19/12/20	DESIGN 18)								
Mercoledì	<u>N.1.2</u>						[lezion MICRO (dal 19	e] MEMS AND DSENSORS //09/2018 al 19/12/20	118)				
	<u>D.1.2</u>	[lezione] CONTROL OF INDU ROBOTS (dal 19/09/2018 al 19/12/2018	STRIAL										
	<u>E.G.2</u>	[esercitazione] ANALOG CIRC DESIGN (dal 20/09/2018 al 20/12/2018											
Giovedì	<u>E.G.4</u>		[lezione (dal 20/] ELECTRONIC SYS 09/2018 al 20/12/20	STEMS 18)								
	<u>E.G.1</u>						[lezion MICRO (dal 20	e] MEMS AND DSENSORS 1/09/2018 al 20/12/20	118)				
							llezion						
Venerdì	L.26.14						(dal 21	/09/2018 al 21/12/20	18)				
	<u>D.1.1</u>	[lezione] ANALOG CIRCUIT [(dal 21/09/2018 al 21/12/2018	ESIGN [lezione) (dal 21/	ELECTRONIC SYS 09/2018 al 21/12/20	STEMS 18)								
Sabato													
CLOUIO													

Insegname	enti selez	ionati								
Visualizza	Legenda	Denominazione Insegnamento	Docente	Cfu	Anno corso	Semestre	Data inizio	Data fine	Rimuovi	
Ing. Ind-In	Ing. Ind-Inf (Mag.)(ord. 270) - MI (476) Electronics Engineering - Ingegneria Elettronica									
		052427 - ANALOG CIRCUIT DESIGN	Lacaita Andrea Leonardo	10.00		1	17/09/2018	21/12/2018	(L	
		088724 - ELECTRONIC SYSTEMS	Zappa Franco	10.00		1	20/09/2018	21/12/2018	(L	
		095162 - MEMS AND MICROSENSORS	Langfelder Giacomo	10.00		1	18/09/2018	20/12/2018	(L)	
		090914 - CONTROL OF INDUSTRIAL ROBOTS	Rocco Paolo	5.00		1	17/09/2018	19/12/2018	(L	
Aggiorna										

Every week about 24 hours of LESSONS and EXERCISES in calss and 3 hours of LABORATORIES

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

43 / 56

POLITECNICO MILANO 1863

Politecnico di Milano: Schools and Masters

Electronics and Engineering: what and why?

Master Degree in Electronics Engineering

Data and Stats

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

How many graduates?

B.S.E.E.

AA esteso

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

AA esteso

Time to job

Source: www.careerservice.polimi.it

franco.zappa@polimi.it

Who are the students?

Enrolled students to the M.S.E.E.

franco.zappa@polimi.it

Distribution of exams' marks

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

POLITECNICO **MILANO 1863**

M.S.E.E. employment data

Master in ELECTRONICS Enginee

TOTAL OFFERS: 3571

COMPANY SIZE*

Electronics and Automation	2
СТ	1
Mechanics and Installation	
Metallurgy and Metalworking	
T Consultancy	
Rusiness Consultancy	

Italy

Abroad

Consultancy
usiness Consultancy
cientific Research and Dev
utomotive
usiness Services
elecommunications

Electronics and Automation

Electronics Engineer	22.2%
Computer Scientist & Eng. 1	6.3%
Designer	9.2%
Sales & Business Developer	8.1%
Process Engineer	6.4%

Mechanics and Installation

Computer Scientist & Eng.	21%
Process Engineer	13.6%
Electronics Engineer	12.1%
R&D Engineer	12.1%
Designer	10.5%

Computer Scientist & Eng.	63.9% <mark>-</mark>
Software Architect	8.2% 🗖
Electronics Engineer	5.7%
Process Engineer	4.9%
Hardware Engineer	1 .9 %

Metallurgy and Metalworking

Computer Scientist & E	ng. 19.5%
Process Engineer	18%
Electronics Engineer	13.7%
Designer	13.3%
Sales & Business Develo	oper 9.4%

ELECTRONICS ENGINEERING

Employement Statistics 2019 - Master of Science Graduates

n 2017 71 students (57 Italian and 14 international) obtained the Master's degree in Electronics Engineering. Total respondents to the annual employment survey were 52 (coverage rate 73%).

Graduates' Profile:21% female and 79% male; average age of graduation: 25,8 years; average duration of studies 2.8 years;

Italian graduates	International graduates	Electronics and Automation	35%	Desian	73%
working abroad	working in Italy	Automotive	9%	Research and Development	67%
18%	33%	Telecommunications	7%	Planning	13%
1070	0070	Metallurgy and Metalworking	5%	Operations	13%
		Scientific Research and Devel	4%	Quality and Control	9%

Internationalization

www.polimi.it/it/servizi-e-opportunita/studfare-allestero Kazakh Izbekister North tlanti Nort Pacif Sahara Saudi Aral Zambia Aozambique Madagascar Study abroad committee: Sout prof.ssa Federica Foiadelli (Erasmus, worldwide except China), prof.ssa Flavia Grassi (Double degree and exchange with China), (Double degree, expect China) dott.ssa Michela Longo

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

Brochure on M.S.E.E.

Manifesto degli studi

Legenda:

- B insegnamento "caratterizzante" l'Elettronica.
- C insegnamento "affine" o attività "integrativa".
- D.I. Didattica Innovativa (flipped-classroom, blended learning, cotutela con aziende, soft skills o Massive Open Online Courses).
- SSD Settore Scientifico Disciplinare (ad esempio "INF-INF/01" è "Elettronica").

CFU - Crediti Formativi Universitari (1 CFU è pari a circa 10 ore in aula e circa 15 ore di studio a casa).

Insegnamenti del 1° Anno di corso

Piano di Studio preventivamente approvato PSS - ELECTRONICS ENGINEERING

Codice	Attività formative	SSD	Denominazione Insegnamento	Lingua	Sem	CFU	CFU Gruppo
052427	В	ING-INF/01	ANALOG CIRCUIT DESIGN		1	10 [1 di D.I.]	10
054654	В	ING-INF/01	ELECTRONIC SYSTEMS		1	10	10
095155	В	ING-INF/01	ELECTRON DEVICES		1	10	10
095162	В	ING-INF/01	MEMS AND MICROSENSORS		1	10	
095251	В	ING-INF/01	SIGNAL RECOVERY		2	10	10
095264	В	ING-INF/01	DIGITAL INTEGRATED CIRCUIT DESIGN		2	10	10
095274	В	ING-INF/01	RF CIRCUIT DESIGN		2	10	10
054085	В	ING-INF/01	BIOCHIP	-	2	5 [2 di D.I.]	-
054083	В	ING-INF/01	DIGITAL ELECTRONIC SYSTEMS DESIGN		2	5 [3 di D.I.]	5
			Insegnamenti a scelta dal Gruppo TAB1				5

Insegnamenti del 2° Anno di corso

Piano di Studio preventivamente approvato PSS - ELECTRONICS ENGINEERING

Codice	Attività formative	SSD	Denominazione Insegnamento	Lingua	Sem	CFU	CFU Gruppo
095380	В	ING-INF/01	MIXED-SIGNAL CIRCUIT DESIGN	-	1	10	10
090918	В	ING-INF/01	POWER ELECTRONICS	-	1	10	10
			Insegnamenti a scelta dal Gruppo TAB1				10
054081	В	ING-INF/01	MICROELECTRONIC TECHNOLOGIES	-	2	5 [1 di D.I.]	10
055519	В	ING-INF/01	RADIATION DETECTION SYSTEMS	-	2	5	
090935	В	ING-INF/01	ELECTRONICS DESIGN FOR BIOMEDICAL	-	2	10	
			Insegnamenti a scelta dal Gruppo TAB2				10
			Insegnamenti a scelta dal Gruppo TAB1				10
090921			THESIS AND FINAL EXAM		1	20	20
090921			THESIS AND FINAL EXAM		2	20	20

www.poliorientami.polimi.it/fileadmin/user_upload/open_day_virtuale_2020/ingegneria_elettronica/Ingegneria_Elettronica_OpenDay_Brochure.pdf

More info at:

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

Manifesto degli studi

Insegnamenti del Gruppo TAB1

Codice	Attività formative	SSD	Denominazione Insegnamento	Lingua	Sem	CFU
052471	С	ING-INF/03	ADVANCED DIGITAL SIGNAL PROCESSING		1	10 [1 di D.I.]
097589	С	FIS/03	ADVANCED OPTICS AND LASERS		1	10
099282	С	BIO/10	BIOINFORMATICA E GENOMICA FUNZIONALE	Ő	1	5
083042	С	ING-IND/34	BIOINGEGNERIA CELLULARE	0	1	10
073011	С	ING-INF/06	BIOINGEGNERIA DEL SISTEMA MOTORIO	0	1	5
090914	С	ING-INF/04	CONTROL OF INDUSTRIAL ROBOTS	-	1	5
055520	В, С	ING-INF/04 ING-INF/07	OPTICAL MEASUREMENTS		1	5
096617	С	FIS/03	PHYSICS OF PHOTOVOLTAIC PROCESSES	-	1	5
055552	С	ING-INF/03	RADAR IMAGING	-	1	5 [1 di D.I.]
052577	С	ING-IND/32	SISTEMI PER L'AUTOMAZIONE E LA COMUNICAZIONE INDUSTRIALE	0	1	5
054312	С	ING-INF/03	DIGITAL COMMUNICATION	-	1	10 [2 di D.I.]
095907	С	ING-INF/05	EMBEDDED SYSTEMS	-	1	10
052351	С	ING-INF/04	MODEL IDENTIFICATION AND DATA ANALYSIS	-	1	10
096532	С	ING-IND/31	ADVANCED CIRCUIT THEORY		2	5
088949	С	ING-INF/05	ADVANCED COMPUTER ARCHITECTURES	-	2	5
093062	С	ING-INF/04	AUTOMATION AND CONTROL IN VEHICLES	-	2	5
095947	С	ING-INF/05	CRYPTOGRAPHY AND ARCHITECTURES FOR COMPUTER SECURITY	-	2	5
055521	С	ING-IND/31	ELECTROMAGNETIC COMPATIBILITY C		2	5 [2 di D.I.]
096660	С	MAT/08	NUMERICAL METHODS IN MICROELECTRONICS	-	2	5
052470	С	ING-INF/03	QUANTUM COMMUNICATIONS	-	2	5
096081	С	FIS/03	QUANTUM OPTICS AND INFORMATION	-	2	5
089480	С	FIS/03	SOLID STATE PHYSICS A	-	2	5
083047	С	ING-IND/34	BIOMATERIALI [C.I.]	0	2	10
095942	С	ING-INF/05	DIGITAL SYSTEMS DESIGN METHODOLOGIES		2	10

Insegnamenti del Gruppo TAB2

Codice	Attività formative	SSD	Denominazione Insegnamento	Lingua	Sem	CFU
095155	В	ING-INF/01	ELECTRON DEVICES	-	1	10
095162	В	ING-INF/01	MEMS AND MICROSENSORS	-	1	10
095380	В	ING-INF/01	MIXED-SIGNAL CIRCUIT DESIGN	-	1	10
090918	В	ING-INF/01	POWER ELECTRONICS		1	10
054184	В, С	ING-INF/07	RELIABILITY DESIGN	-	1	5
052484	В, С	ING-INF/02	RF SYSTEMS	-	1	10 [1 di D.I.]
054092	В	ING-INF/01	SENSOR SYSTEMS	-	1	5 [3 di D.I.]
054321	В, С	ING-INF/02	ANTENNAS	}	2	5 [1 di D.I.]
054085	В	ING-INF/01	BIOCHIP	-	2	5 [2 di D.I.]
054083	В	ING-INF/01	DIGITAL ELECTRONIC SYSTEMS DESIGN	}	2	5 [3 di D.I.]
095264	В	ING-INF/01	DIGITAL INTEGRATED CIRCUIT DESIGN	-	2	10
090935	В	ING-INF/01	ELECTRONICS DESIGN FOR BIOMEDICAL INSTRUMENTATION	-	2	10
054081	В	ING-INF/01	MICROELECTRONIC TECHNOLOGIES	-	2	5 [1 di D.I.]
094791	В, С	ING-INF/02	MICROWAVE ENGINEERING	-	2	5
096115	В, С	ING-INF/02	PHOTONIC DEVICES	-	2	10
055519	В	ING-INF/01	RADIATION DETECTION SYSTEMS	-	2	5
095274	В	ING-INF/01	RF CIRCUIT DESIGN	-	2	10
052834	В	ING-INF/01	ELECTRONICS AND ELECTROACOUSTICS FOR SOUND ENGINEERING	-	2	10

www.elettronica.polimi.it

HOME PROGRAM

PROSPECTIVE STUDENTS ~ ENROLLED STUDENTS ~ JOBS ~ CONTACTS ~

PROFESSORS RESEARCH

HOME PROGRAM

Electronics Engineer

The Study Programme (Corso di Studi, CdS) in Electronics Engineering trains the student to design, use, and innovate electron devices, circuits and systems, to guide the evolution of this technological field with competence and professionalism, and to promote its deployment in countless sectors and in most diversified applications, where Electronics plays a key role. The objective of the Study Programme in Electronics Engineering is to train professionals with a rich and robust scientific and technological background, which combine physical-chemical-mathematical understanding of the most advanced technologies with cutting-edge engineering skills, necessary to conceive, design, and develop applications, products, and systems to be deployed in the most diversified fields, often enabling new markets and inventing new application scenarios.

""Electronics Engineering is at the basis of all technologies in today's Information age, fostering all aspects of life, work, and society.""

Research in electronics technologies is continuous, incessant, and increasingly stimulated by the most diverse and demanding applications. For example, ever-faster microprocessors and increasingly dense memories are the essential electronic constituents of any computer and processing system. Ultra-sensitive and miniaturized semiconductor sensors, which continually dialogue with each other and with the outside world, are fundamental to acquire real world's signals. Embedded systes can understand, manage, and control objects around us and can implement actions through drones and robots. Not to speak of the ubiquitousness of electronic systems in telecommunications, where the development of ever faster and more complex electronic circuits enabled the explosion of cellular, fiber optic, and satellite communications.

Information events

The School of "Industrial and Information Engineering" organizes several information and guidance events each year, in order to explain to interested students what Engineering is and what the various Study Programmes are.

In particular, both the Bachelor of Science (i.e., the three-years "Laurea") and the Master of Science (i.e., the two-years "Laurea Magistrale") Degrees in Electronic Engineering have been actively presented at the following events:

• "P OPEN DAYs 2020" (held online on April 27, 2020), addressed to Italian high-school students interested in the Bachelor's first level degree in "Electronic Engineering"; video about the study programme and students interview.

• "D POLIMI e Scuola di INGEGNERIA INDUSTRIALE e dell'INFORMAZIONE" and also "D Ingegneria ELETTRONICA" (held on December 2, 2019, in Italian), addressed to students of the Scientific and Technical High School of Salesiani in Sesto San Giovanni;

• "D ELECTRONICS ENG.: Study Programme's Quality Assurance" (hend on October 31, 2019) to students at the second year of the M.S.E.E., on AQ (Quality Assurance), AVA procedure (Self-evaluation, periodic Evaluation, Accreditation), proactive role of students, Students' Representatives within the Study Programme's Council and within the Joint Professors-Students Committee.

• "D QUALITY ASSURANCE" (held on October 9, 2019) to students at the M.S.E.E. providing an overview on "Bologna process", AQ (Quality Assurance), AVA (Autovalutazione, Valutazione periodica e Accreditamento, i.e. self-evaluation, periodic evaluation, and Accreditation) procedure, role of MIUR (Italian Ministry of Education, University and Research), role of ANVUR (Agenzia Nazionale di Valutazione del sistema Universitario e della Ricerca, Italian evaluation agency for university and research), and periodic visit of CEV (Commissione di Esperti della Valutazione, evaluation experts committee).

• "D LESSON ZERO" (held on October 3, 2019) to students at the M.S.E.E., providing an overview on POLIMI, Schools, Departments, Organization, Students' role, Services and Opportunities and Contact persons, M.S.E.E. programme, courses and credits, thesis tipologies and evaluations, internal and external thesis, final grade, thesis topics on the research developed at POLIMI on Electronics.

• "D LEZIONE ZERO" (held on September 27, 2019) to freshmen at the first year of the Laurea (B.S.E.E.), providing an overview on POLIMI, Schools, Departments, Organization, Students' role, Services and Opportunities and Contact persons, B.S.E.E. programme, courses and credits, intership;

• "A WELCOME DAY 2019" (held on September 11, 2019), addressed to international students enrolling to the Master of Science in "Electronics" Engineering" (M.S.E.E., i.e. the "Laurea Magistrale");

• "B SUMMER SCHOOL 2019" (held on June 11, 2019), addressed to the best students of the second-to-last year of secondary high schools in Italy, illustrating the Study Programmes of both Laurea (B.S.E.E.) and Laurea Magistrale (M.S.E.E.) in Electronic Engineering at POLIMI;

54 / 56

• "AMASTERS' Degrees at POLIMI 2019" (held on May 14, 2019), addressed to first-level B.S. students interested to apply to the second-level Master's Degree (LM) in "Electronics Engineering";

• "B ELECTRONICS", a brief review of some applications of electronics in everyday's life;

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

More on www.elettronica.polimi.it

CONTACTS - PROFESSORS RESEARCH

The ratio between students and teachers is between 10 and 13 and the values of the indicators of the teachers quality, according to the parameters of the MIUR, are between 1.1 and 1.2, compared to an average of 1.0 of other universities in the same geographical area. The overall percentage of satisfied undergraduates in the B.S.E.E.'s degree programme is between 84% and 88%. The percentage of female students (15%) is in line with other Study Programmes (10% Mechanical Eng., 14% Computer Science, 15% Aerospace Eng.), but it is low and with no motivation, leaving ample room for better gender balance. "As confirmed by many companies, the employment rate of ELectronics Engineers within four months after

JOBS

graduation is 97% for the Laurea Magistrale M.S.E.E.'s Degree, of which more than 70% within one month. "

It is also interesting to note that the first average salary (1,807 €) is higher than the average of other Master's degree at POLIMI (1,600 €).

EMPLOYMENT RATE*	WITHIN 6 MONTHS*	€1,807		
100%	91% * percentage calculated on those employed 1 year after graduation			
EMPLOYEES	CONTRACT TYPE*	COMPANY SIZE*		
98%	Permanent 68% • Fixed-term 16% • Apprenticeship 14% • Internship • • Other* 2% •	1 - 250 251 - 1.000 +1.000 40%		
	* project based, occasional collaboration	* number of employees		
WHERE THEY WORK	TOP 5 SECTORS	TOP 5 AREAS OF EXPERTISE		
Italian graduates working 18% abroad	Electronics and Automation 35% Automotive 9%	Design 73% Research and Development 67%		
International graduates 33% working in Italy	Telecommunications 7% Metallurgy and Metalworking 5% Scientific Research and Devel 4%	Planning 13% Operations 13% Quality and Control 9%		

HOME PROGRAM ~ PROSPECTIVE STUDENTS ~ ENROLLED STUDENTS

Alumni

Master in ELECTRONICS Engineering

franco.zappa@polimi.it

HOME CORSO - STUDENTI FUTURI - STUDENTI ISCRITTI

CONTATTI ~ DOCENTI RICERCA

Here are some of our former graduated students, who reached outstanding positions in different fields and environments, both in Italy and abroad. As you can see, Electronics engineers boost excellence everywhere!

Alberto Sangiovanni-Vincentelli. I was born in Milano in 1947. I received an MS in Electronic Engineering cum laude from Politecnico di Milano in 1971. After graduation, I joined the Department of Electronic Engineering as a researcher first and then as a Professore Incaricato. In 1975, Lioined Electrical Engineering and Computer Sciences at the University of California, Berkeley, where I hold the Edgar L. and Harold H. Buttner Chair, Among various visiting positions, I was at IBM T.J. Watson Research Center in 1980 and at MIT in 1987. In 2001, I received the Kaufman Award for my pioneering contributions to EDA from the Electronic Design Automation Consortium. In 2011, I was awarded the IEEE/RSE Maxwell Medal "for groundbreaking contributions that have had an exceptional impact on the development of electronics and electrical engineering or related fields". I co-founded Cadence and Synopsys, listed in NASDAO with market cap of over 40 Billion USD. I presently serve on the Board of Directors of Cadence Design Systems, KPIT (India), Cogisen, ISEO, Expert System (Italy), and UltraSoC (UK) (Chairman of the Board). I consulted for, among others, Intel, HP, TI, ST Microelectronics, Mercedes, BMW, Magneti Marelli, Telecom Italia, United Technologies, Camozzi Group, Pirelli, General Motors, UniCredit and UnipolSAI. I had been the President of Comitato Nazionale dei Garanti per la Ricerca and President of the Strategy Committee of the Fondo Strategico Italiano. I am also serving as member of the Advisory Board of the Politecnico di Milano, and as Chairman of the International Advisory Council of MIND (Milano Innovation District) Lam a member of the United States National Academy of Engineering, an IEEE and ACM Fellow I received an honorary Doctorate from Aalborg University (Denmark) and one from KTH (Sweden). I published more than 950 papers and 19 books.

Alberto Sangiovanni Vincentelli

Mario Caironi was born in Bergamo (Italy) in 1978. He studied at "Politecnico di Milano" (Milan. Italy) where he obtained his Laurea degree in Electrical Engineering in 2003 and a Ph.D. in Information Technology with honours in 2007, with a thesis on organic photodetectors and memory devices. In March 2007 I joined the group of Prof. Henning Sirringhaus at the Cavendish Laboratory (Cambridge, UK) as a postdoctoral research associate. I worked in Cambridge for 3 years on high resolution inkjet printing of downscaled organic transistors and logic gates, and on charge injection and transport in high mobility polymers. In April 2010 I was appointed as a Team Leader at the Center for Nano Science and Technology@PoliMi of the Istituto Italiano di Tecnologia (Milan, Italy). In 2014 I entered the tenure track at the same institution, securing a tenured Senior Researcher position in 2019. Lam currently responsible of the "Printed and Molecular Electronics" research line and my group is currently composed of 7 postdocs, 8 PhD students and 1 fellow researcher. Lam author and co-author of more than 120 scientific papers in international journals and books. I have an h-index of 35 (Scholar - July 2019). I am currently interested in solution based high resolution printing techniques for micro-electronic, opto-electronic and thermoelectric devices fabrication, in the device physics of organic semiconductors based field-effect transistors and their integration in high-frequency printed circuits, and in biomedical and/or implantable sensors and electronics for the healthcare. I am an 2014 ERC grantee.

My double-E master degree at POLIMI was key to the rest of my career. When I joined the Cavendish Labs, I immediately teamed with chemists and physicists who were developing the fastest polymer transistor at that time. They did not know how to measure it. I went back to my university notes, and found very soon the solution. A few months later we published a paper that is still, after 10 years, a milestone in polymer electronics. I believe that as research fields become more and more inter- and multi-disciplinary, with impact on healthcare and personalized medicine, it is even more important to hold solid basis in one sector to be able to make a difference: and Electronics is everywhere! As such, a double-E degree will give you the keys to many future technologies.

Mario Cairon

POLITECNICO MILANO 1863

